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Abstract: Based on simulations by the Beijing Climate Center climate system model version 2 
(BCC-CSM2), the possible changes in net primary productivity (NPP) of the terrestrial eco-
system in China during the 21st century are explored under the Shared Socioeconomic 
Pathway 2 (SSP2) 4.5 scenario. We found both the near-term and long-term terrestrial NPP 
basically shows a unanimously increasing trend, which indicates low ecosystem productivity 
risk in the future. However, the simple linear regression is insufficient to characterize the 
long-term variation of NPP. Using the piecewise linear regression approach, we identify a 
decreasing trend of NPP in large areas for the latter part of the 21st century. In the northeast 
region (NER) from east Inner Mongolia to west Heilongjiang province, NPP decreases sig-
nificantly after 2059 at a rate of −0.9% dec1. In the south region (SR) from Zhejiang to 
Guangxi provinces, a rapid decline of −2.4% dec1 is detected after 2085. Further analysis 
reveals that the rapid decline in SR is primarily attributed to the decrease in precipitation, with 
temperature playing a secondary role, while the NPP decline in NER seems to have no evi-
dent relations with climate change. These findings are useful for making preparations for 
potential ecosystem crisis in China in the future. 
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1  Introduction 
Net primary productivity (NPP) is the net carbon fixed by plants through photosynthesis 
(Wang et al., 2016; Huang et al., 2019). It is a key component of the terrestrial carbon cycle, 
which measures the direct production capacity of ecosystems (Schimel et al., 2001; Yuan et 
al., 2017). Besides, regional NPP is closely related to regional biodiversity, sustainability, 
and ecosystem security, and has been widely used to assess ecosystem vulnerability under 
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climate change (Gao et al., 2017; Yuan et al., 2017). Therefore, the spatial and temporal 
characteristics of global and regional NPP have received wide attentions across the world 
(e.g., Woodward and Lomas, 2004; Doughty et al., 2015; Sun and Mu, 2018). 

Several studies have been conducted examining NPP variations in China. For example, 
using the Atmosphere re-Vegetation Interaction Model, He et al. (2007) investigated the 
changes in terrestrial NPP in China during 1971–2000, and observed an increasing trend at a 
linear rate of 8.8 gC m2 dec1. Using the Integrated Biosphere Simulator (IBIS), Yuan et al. 
(2014) showed a reduction of NPP over most parts of eastern and central China, but found 
no significant trend for the country as a whole. There are also studies focusing on future 
changes in NPP in China. For example, Wang et al. (2016) evaluated NPP’s variation over 
the 21st century based on earth system models in CMIP5, and showed an increasing trend of 
NPP over China under all four RCP scenarios, especially in western China. However, the 
increasing magnitude over western China is most variable across models, while it is pretty 
stable over eastern China. Huang et al. (2019) evaluated NPP variations based on the 
LPJ-DGVM model simulations, driven by various climate and CO2 concentration scenarios 
in the 21st century. They found that the total NPP is projected to continuously increase under 
different scenarios, with CO2 concentration playing the dominant role in driving the NPP 
increase in China. Using the LPJ-DGVM model, Sun and Mu (2018) confirmed that the NPP 
in China is expected to increase during 2011–2100 under RCP4.5. 

Since the new scenarios of Shared Socioeconomic Pathways (SSPs) have been applied in 
CMIP6 (Eyring et al., 2016), the dynamics of future terrestrial ecosystems in China need to 
be re-evaluated. Moreover, the decline of regional NPP should receive more attentions than 
the increase of NPP, as it may lead to potential ecosystem crises. In this study, we adopt the 
SSP245 which is an only-one scenario of SSP2 implemented in the CMIP6 experiments. The 
SSP2 scenario represents a “middle of the road” scenario describing a future world that re-
sembles the historical pattern the most (Riahi et al., 2017). The rest of the paper is organized 
as follows. Section 2 introduces the data and methods. Section 3 shows the main results, 
with discussions presented in Section 4. The main conclusions are summarized in Section 5. 

2  Data and methods 

2.1  Data 

The NPP and GPP were simulated by the second generation of Beijing Climate Center Cli-
mate System Model (BCC-CSM2) archived in the CMIP6 project. BCC-CSM is a global 
fully coupled climate-carbon cycle model (Wu et al., 2010; Wu et al., 2013), developed 
mainly for improving the simulation of China’s climate (Xin et al., 2013; 2018; Wu et al., 
2019). The first generation of BCC-CSM1.1 shows good performance in reproducing the 
observed atmospheric CO2 concentration, and the interannual variability and long-term trend 
of global carbon cycle (Wu et al., 2013). BCC-CSM2 outperforms BCC-CSM1.1 in both the 
model resolution and physics (Wu et al., 2019). Taking the land surface model 
BCC-AVIM2.0 for example, several improvements are included on the basis of its prede-
cessor BCC-AVIM1.0. BCC-AVIM2.0 employs a variable temperature threshold to deter-
mine soil water freezing–thawing instead of using a fixed temperature of 0℃ in BCC- 
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AVIM1.0. Besides, BCC-AVIM2.0 adopts a better algorithm of snow surface albedo and 
snow cover fraction, a dynamic phenology for deciduous plant function types, and a 
four-stream approximation of solar radiation transfer through vegetation canopy (Li et al., 
2019; Wu et al., 2019). All these contribute to the better performance in simulating vegeta-
tion phenology (Li et al., 2019). We use historical GPP/NPP simulations for the period 
1980–2013, consistent with observations, and future projections for the period 2015–2100 
under the SSP245 scenario. The climate data used in this study includes precipitation and 
near-surface air temperature for the historical period 1960–1999 and the future period 
2015–2100. This historical period contains 40 years and is set the same as in Hempel et al. 
(2013). The historical simulations are compared with observations, based on which 
bias-correction of future projections is performed. All BCC-CSM2 simulations are available 
at the monthly scale at the T106 grid (approximately 110 km).  

The observed monthly GPP at a spatial resolution of 0.5 is obtained from a gridded 
benchmark product upscaled from in situ FLUXNET measurements for the period 
1980–2013 (Jung et al., 2009; 2011). The observation-constrained NPP fields are derived 
from GPP using the methodology described in the methods section. The monthly tempera-
ture and precipitation are obtained from the Climate Research Unit (CRU) (Harris et al., 
2014) at a 0.5 spatial resolution from 1960–1999. All the 0.5 data are transformed into the 
BCC-CSM2 grid through bilinear interpolation before further analysis. There are many 
methods for spatial interpolation such as the nearest neighbor, inverse distance weighted, or 
Kriging etc. The bilinear interpolation method is chosen for its simplicity and representa-
tiveness. 

2.2  Methods 

2.2.1  Quantile mapping 
Quantile mapping is a widely used approach in climate research for adjusting model results 
to match with observations (e.g., Themeßl et al., 2012; Maraun, 2013; Kim et al., 2016). It 
adjusts a model value at a given quantile from the cumulative distribution function (CDF) 
during the reference period to the observed value at the same quantile. The basic form is as:  
 1

mod mod mod[ ( ; ); ]cor obs obsX F F X     , (1) 
where Xcor is the bias corrected value, Xmod is the model value, F is the cumulative distribu-
tion function, F1 is the inverse function of F. α and β are the shape and scale parameters, 
respectively. This study employs a non-parametric quantile mapping during the reference 
period, i.e., there is no specification of the probability distribution function for deriving the 
CDFs. Non-parametric quantile mapping shows better skill than parametric ones in reducing 
the systematic errors (Gudmundsson et al., 2012). For monthly GPP values lower than 0.1 g 
m2 mon1 and precipitation values lower than 0.1 mm mon1, a zero value is set to replace 
them. The quantile mapping parameters are then applied to adjust the future simulations of 
monthly GPP, temperature, and precipitation at each grid.  

2.2.2  Derivation of NPP 

Since the FLUXNET product provides no observational NPP values, the future NPP cannot 
be corrected directly through quantile mapping. Nevertheless, given the close linear rela-
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tionship between GPP and NPP (Figure 1) (e.g., Yu et al., 2013; Zhu et al., 2014; Wang et al., 
2015), GPP can be used to derive NPP. The future GPP values from BCC-CSM2 are first 
bias-corrected through quantile mapping. Then, through linear regression of simulated NPP 
over GPP, a linear regression model is built at each grid for each month. With adjusted GPP, 
the adjusted NPP values are obtained through linear regressions. The linear regression ex-
pression is as: 
 NPP GPPy a b x          (2) 
where a and b are the regression coefficients of NPP over GPP, ε is the residual random 
error.  

 

 
 

Figure 1  (a) Scatter plot between GPP and NPP from an example grid cell in June from 2015–2100 (The line is 
the linear fit. r represents the correlation coefficient.); (b) Correlation coefficient distribution between GPP and 
NPP in June from 2015–2100 (Grids shown are all significant at the 0.05 level.) 
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2.2.3  Piecewise linear regression model 

The one-phase linear regression may not be sufficient to characterize the change features of 
NPP and climate (temperature and precipitation) during a long period. Thus, a two-phase 
piecewise regression method is adopted in this study to detect the potential change in the 
NPP time-series and identify the corresponding turning years. There are two forms of 
piecewise regression models (Wang et al., 2010): (1) non-continuous restriction at break-
points; and (2) continuous at each breakpoint. Both have been widely used in the detection 
of temporal turning points (e.g., Menne and Williams, 2005; Piao et al., 2011; Zhang et al., 
2018). Here the first kind of piecewise regression model is chosen to examine the temporal 
inhomogeneity, which is expressed as: 
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where y is dependent variable, t is the time, α1, α2, β1 and β2 are the regression coefficients, ε 
is the residual random error, n is the length of the time series, and c is the potential turning 
point. The least-squares linear regression is used to derive the estimators of c and other co-
efficients. The value of c that minimizes the following error function Q(c) is denoted as the 
turning year. 
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3  Results 

3.1  Comparison of GPP/NPP before and after bias correction 

Compared with observations (Figure 2c), the modelled GPP (Figure 2a) has well reproduced 
the spatial pattern of “high southeast-low northwest” over China. Specifically, the integrated 
GPP value over China is 6.91 PgC a1 from BCC-CSM2 and 7.13 PgC a1 from FLUXNET 
during 1980–2013, indicating a well match between the two. Using non-parametric quantile 
mapping, the modelled GPP is adjusted to match the observations at grid scale. The adjusted 
GPP reproduces not only the long-term mean values of observations during the reference 
period (Figure 2b cf. Figure 2c), but also shows similar CDFs with the observation (Maraun, 
2013). Compared with modelled GPP (Figure 2a), the locations with the highest GPP values 
are shifted southwestward from Zhejiang-Fujian provinces to Fujian-Guangxi provinces. 
The area with anomalously low GPP in central Hubei province is recovered with normal 
values. There are also other adjustments, such as the strengthening of GPP in Northeast 
China and west Xinjiang, and non-values over the major desert areas in Xinjiang and Inner 
Mongolia. These adjustments have made the simulated GPP more reasonable.  

After the adjustment of future GPP, the linear regression parameters obtained from the 
modelled GPP and NPP at each grid (Figure 1) are applied to estimate the future NPP. The 
corrected annual NPP and its changing trend from 2015–2050 are shown in Figures 3b and 
3d, respectively. NPP generally decreases from the southeast to the northwest over China, 
with some high values (over 1000 gC m2 a1) over Hubei-Hunan-Zhejiang and Yunnan 
provinces. In the original map without correction (Figure 3a), high values concentrate in 
the southeast of Zhejiang and Fujian and the southwest of Sichuan and Yunnan provinces. 
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Figure 2  Annual mean GPP distribution (gC m2 a1) during 1980–2013 with BCC-CSM2 before (a) and 
after (b) quantile mapping, and with observational FLUXNET (c) 
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The NPP shows a general increasing trend in the near-term in both the corrected and 
non-corrected simulations. However, the increasing magnitude of the non-corrected NPP is 
much larger than that of the corrected one (Figure 3c cf. 3d). It increases the most around the 
Sichuan Basin after correction. The increased NPP implies low risk to the terrestrial ecosys-
tem in the near future. Similarly, the NPP shows a general increasing trend over China dur-
ing 2015–2100 (Figure not shown). Compared with the historical situation, the projected 
NPP change seems to alleviate the worries on the potential ecosystem productivity crisis in 
the near future. However, ecosystem crisis may occur in the latter part of the century, which 
is hard to identify by the single-phase linear trend detection method. In light of this, the 
piecewise linear regression method is applied to detect the NPP changing trend in the latter 
part of the century.  

 

 
 

Figure 3  Annual mean NPP (a and b, gC m2 a1) and the changing trend (c and d, gC m2 a1 dec1) from 
2015–2050 (The left and right plots are for the results before and after the transformation from GPP, respectively. 
The dots indicate the areas with significant trends at the 0.05 level.) 

3.2  Identification of the potential risky ecosystem regions 

The changing trend of NPP in the latter part of the 21st century (defined here as 2015–2100) 
is shown in Figure 4a. It exhibits more negative trend points over China, which are clustered 
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spatially into three major regions, i.e., the northeast from east Inner Mongolia to Heilongji-
ang provinces, the central region from Gansu-Shaanxi to Hubei provinces, and the south 
from Zhejiang to Guangxi provinces. The south and the strip along the national boundary of 
Heilongjiang decrease the most, with the corresponding turning year shown in Figure 4b. In 
the northeast, NPP decreases primarily at two different years. Along the boundary strip, NPP 
decreases at around the year 2089. Inside China, NPP decreases around 2060. In the central 
region, the turning years vary widely without a uniform year. In the south, NPP generally 
decreases at around 2085. The grids with similar turning years and proximity in space are 
combined into two regions for regional analysis (in red boxes in Figure 4b), which are 
specified as the northeast region (NER) and the south region (SR), respectively. The time 
series of NPPs are shown in Figure 5. Through piecewise regression, the turning year for the 

 

 
 

Figure 4  (a) The NPP changing trend in the latter part of the 21st century (gC m2 a1 dec1) (The dots indicate 
the trends that are significant at the 0.05 level.); (b) The corresponding turning years (Only grids with negative 
trends in (a) are shown. The boxes represent the identified risky regions.) 
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NPP in NER falls in 2059, and 2085 in SR. NPP in NER increases at a rate of 1.6 gC m2 a1 
dec1 insignificantly before 2059, but decreases significantly at the 0.05 level at a rate of 
3.0 gC m2 a1 dec1 afterwards, equivalent to 0.9% dec1 of the long-term mean during 
20592100. The NPP in SR increases at 3.1 gC m2 a1 dec1 before 2085, but decreases 
rapidly at 19.7 gC m2 a1 dec1 afterwards, both significant at the 0.01 level. The decreas-
ing rate accounts for 2.4% dec1 of the mean from 2085–2100. 

 

 
 

Figure 5  NPP series from 2015–2100 for NER and SR (The dashed lines are the linear fit before and after the 
turning years.) 

 

3.3  Relation between NPP changes and climate variations 

The correlation coefficients between NPP and the detrended temperature and precipitation 
from 2015–2100 are shown in Figures 6a and 6b. The BCC-CMS2 temperature and precipi-
tation data have been bias-corrected against observations through quantile mapping. Tem-
perature influences NPP differently over China. In the south and north of East China, tem-
perature exerts a negative impact on NPP. As temperature increases unanimously over China 
in the 21st century under SSP245, a persistent negative effect on NPP over East China is 
expected. In the Tibetan Plateau and northern areas of Inner Mongolia and Heilongjiang 
provinces, temperature influences NPP positively, which is similar to the results based on 
IBIS (Yuan et al., 2014). Maybe it is because those areas are too cold for vegetation growth. 
Moderate temperature reduces there and remains as a primary constraint, and thus the persis-
tent temperature increase in the future would benefit those regions. Precipitation influences 
NPP positively and significantly over most of China, except for some areas around Tibet.  

To determine which climate factor is dominant in influencing NPP in different areas, the 
grids are divided into three categories according to the correlation parameters. The climate 
factor with larger correlation parameter r dominates the grid NPP. If both correlation pa-
rameters are significant at 0.05 level, the grid is marked with gray (Figure 6c). As a result, 
precipitation dominates the NPP variation over most of China in the 21st century, except for 
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Figure 6  Temporal correlation coefficients from 2015–2100 between (a) temperature and NPP; (b) precipitation 
and NPP (The dots indicate the coefficients that are significant at the 0.05 level.); (c) The dominant climate factor 
that influences NPP (Yellow represents temperature. Blue represents precipitation. Gray represents both.) 
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the Tibetan Plateau and Northeast China. In the central part around Shanxi and the southern 
part from Yunnan to Fujian, the ecosystems are influenced strongly by both precipitation and 
temperature. 

To further reveal the abrupt negative change of regional NPP in NER and SR, the NPP se-
ries are compared with the corresponding climate series (Figure 7). These regional variables 
are standardized and linearly regressed before and after the turning year. In NER, NPP shifts 
from a weak increasing trend to a significant decreasing trend in 2059. However, the rele-
vant climate factors do not show matching changes. Temperature after 2059 increases as 
before. Precipitation barely shows any trend either before or after 2059. Although a change 
point is detected for NPP in NER, it is hard to be attributed to the effects of climate varia-
tions. That said, the regional NPP is significantly related with both precipitation and tem-
perature. The linear correlation parameters between NPP and the detrended temperature and 
precipitation for the 21st century are 0.18 (P<0.1) and 0.23 (P<0.05), respectively (Table 1).  

 

 
 

Figure 7  Comparison between NPP and climate variables for (a) NER and (b) SR (The series are standardized. 
The dashed lines are the linear fit before and after the turning years.) 
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In SR, a large portion of the areas is affected strongly by both precipitation and tempera-
ture (Figure 6c). Thus, the NPP change at the turning year of 2085 is probably due to the 
effects of the two climate factors. In SR, NPP turns from a significant increasing trend to a 
significant rapid decline at 2085, similar to that of the precipitation change. Temperature, 
however, drops at first, but rises again afterward. It is worth noticing that NPP is negatively 
related to temperature over SR (Figure 6a), with the correlation coefficient of −0.19 
(P<0.10). Thus, the increase of temperature after 2085 serves as a secondary factor for the 
reduction of vegetation productivity in SR, while precipitation is the primary climate factor 
driving the negative NPP trend transition. 

4  Discussion 
As GPP, temperature, and precipitation variables are bias-corrected separately through quan-
tile mapping, the physical relations between NPP and climate in the model may be distorted 
(Hempel et al., 2013). The non-significant relations between NPP and climate in NER before 
and after 2059 may be due to the effects of separate bias-correction of the variables. To fur-
ther explore this, the piecewise linear regression method is applied for the raw model data in 
NER, with the results shown in Figure 8. The original NPP still turns into negative in the 
year 2059. Temperature and precipitation show similar trend patterns before and after 2059 
with those based on the adjusted data, confirming the minor influence of climate in regulat-
ing the NPP change. In addition, the relationship between climate and NPP has changed. The 
relationship between NPP and temperature becomes significant at 0.10 level after correction, 
while the relationship between NPP and precipitation weakens a bit (Table 1). This is con-

sistent with the fact that in the humid and 
cold northeastern China, temperature is 
the major controlling factor for vegeta-
tion productivity. The bias correction 
seems to be more practical for the special 
case.  

 

 
 

Figure 8  Same as Figure 7a but with non-corrected BCC-CSM2 data 

Table 1  The correlation parameter r between NPP and 
detrended climate factors in NER before and after bias 
correction (Values in blankets are significant levels.) 

 Before After 

NPP-T 0.06 (0.57) 0.18 (0.10) 

NPP-P 0.38 (0.00) 0.23 (0.03) 
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5  Conclusions 
Using the BCC-CSM projections under the SSP245 scenario, the NPP change over China 
during the 21st century is analyzed in this study. We have reached the following conclusions. 

(1) There are no risks in the terrestrial productivity in China in the near-term 2015–2050. 
NPP generally increases significantly over China, with the largest magnitude of increase in 
the Sichuan Basin. 

(2) The ecosystem productivity risks may emerge in the latter part of the 21st century, as 
NPP is projected to decrease over three major regions, i.e., the northeast from eastern Inner 
Mongolia to Heilongjiang, the central region from southern Gansu to Chongqing-Hubei, and 
the south from Fujian to Guangxi. The turning year of NPP change in the central region var-
ies strongly, while in the NER and SR regions, consistent turning years are detected. In NER, 
NPP decreases significantly after 2059 at a rate of –3.0 gC m2 a1 dec1, which accounts for 
–0.9% dec-1 of the mean. In SR, NPP decreases rapidly after 2085 at 19.7 gC m2 a1 dec1, 
which accounts for –2.4% dec1 of the mean. 

(3) NPP is strongly influenced by precipitation and temperature. The influence varies 
across China. The rapid NPP decline in SR is primarily attributed to the decline in precipita-
tion, with temperature playing a secondary role. In NER, however, the NPP change seems to 
have no evident relations with climate variations. 

It should be noted that the results are model-dependent, and thus, uncertainties arising 
from model structure and parameters are inevitable in addition to the complexity of terres-
trial ecosystems. For example, NPP is closely related to precipitation. However, precipita-
tion is a much more uncertain variable to project than temperature in climate models (Wang 
et al., 2016). As a result, the simulated NPP change would be largely affected by the uncer-
tainties from precipitation. Further work should be done to examine the robustness of the 
projected NPP changes using multiple models constrained by observations. 
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